Degrees of freedom and model selection in semiparametric additive monotone regression
نویسنده
چکیده
The degrees of freedom of semiparametric additive monotone models are derived using results about projections onto sums of order cones. Two important related questions are also studied, namely, the definition of estimators for the parameter of the error term and the formulation of specific Akaike Information Criteria statistics. Several alternatives are proposed to solve both problems and simulation experiments are conducted to compare the behavior of the different candidates. A new selection criterion is proposed that combines the ability to guess the model but also the efficiency to estimate the variance parameter. Finally, the criterion is used to select the model in a regression problem from a well known data set.
منابع مشابه
Variable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کاملSome Results on Penalized Spline Estimation in Generalized Additive and Semiparametric Models
In spline regression models, the smoothness of the tted model depends on the knots via their location and how many knots there are. An alternative to knot selection is to keep all the knots, but to restrict their in uence on the tted model, that is, to constrain the values of these coe cients which correspond to the spline basis functions. For example, we can bound the squared L2 norm by some c...
متن کاملEmpirical likelihood inferences for the semiparametric additive isotonic regression
AMS subject classifications: 62G15 62G08 62F30 a b s t r a c t We consider the (profile) empirical likelihood inferences for the regression parameter (and its any sub-component) in the semiparametric additive isotonic regression model where each additive nonparametric component is assumed to be a monotone function. In theory, we show that the empirical log-likelihood ratio for the regression pa...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملEstimation in the l1-Regularized Accelerated Failure Time Model
This note variable selection in the semiparametric linear regression model for censored data. Semiparametric linear regression for censored data is a natural extension of the linear model for uncensored data; however, random censoring introduces substantial theoretical and numerical challenges. By now, a number of authors have made significant contributions for estimation and inference in the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Multivariate Analysis
دوره 117 شماره
صفحات -
تاریخ انتشار 2013